

© Propel Systems, 2016 Cimera Integration Case Study Page 1 of 13
 All rights reserved. Integrating with Subversion v1.0

CIMERA INTEGRATIONS

Integrating with Subversion

A case study

Version 1.0, 11-Jan 2016

Jon Bentley, Gwyn Carwardine

jon.bentley@propelsystems.com
gwyn.carwardine@propelsystems.com

© Propel Systems, 2016 Cimera Integration Case Study Page 2 of 13
 All rights reserved. Integrating with Subversion v1.0

Contents
1 Requirement ... 3
2 Background ... 3

2.1 Subversion ... 3
2.2 Cimera ... 4

3 Integrating Cimera and Subversion... 6

3.1 Interfacing with Subversion .. 6
3.2 Interfacing with Cimera .. 6
3.3 Integration Options ... 7

3.3.1 Option 1: Using Subversion command line interface ... 7
3.3.2 Option 2: Using Subversion hooks and Cimera Web Interface 8
3.3.3 Option 3: Using Cimera hooks and intermediate files .. 9

3.4 Selected Option ... 10
3.5 Solution Design ... 10

3.5.1 Cimera Configuration .. 10
3.5.2 Psuedo-code .. 11

3.6 Implementation .. 11

3.6.1 Full script ... 11
3.6.2 Skills and Effort required ... 12

© Propel Systems, 2016 Cimera Integration Case Study Page 3 of 13
 All rights reserved. Integrating with Subversion v1.0

1 Requirement

The requirement is to integrate the open-source SCM (Software Configuration Management) tool
“Subversion” with Cimera such that builds created in Subversion are reconciled with builds recorded
in Cimera. Additional information held against the builds recorded in Subversion is to be copied into
Cimera (the Subversion revision number and the date/time the build was created).

It is required to view builds created in subversion from within Cimera, the “single source of truth”.
Builds recorded in Cimera can then be related to other items in Cimera, providing additional
management and impact assessment capabilities.

The integration is to work automatically (requiring no user activity) and new builds created in
Subversion should be available in Cimera within a short period, measured in minutes rather than
hours.

There is one Cimera service but there may be multiple Subversion repositories hosted on different
servers.

Any problems during the automated reconciliation process should be recorded and notified to the
appropriate person.

2 Background

2.1 Subversion

The open-source SCM (Software Configuration Management) product Apache Subversion, with
companion product TortoiseSVN, is used within the organisation to manage all source code. Source
code is managed using “branches” for development and unit testing is performed within these
branches. When the code is considered fit for release to formal testing (system / integration /
acceptance test etc) a “tag” is created. A tag is effectively a snapshot, or list, of the current version
of each source code file at that point in time and represents a “build”. It is these builds that are then
promoted through the testing lifecycle and, if signed off, released into production.

The following diagram shows Branch 3.8, its current versions, and the three Tags that have been
“snapshotted” at various times.

© Propel Systems, 2016 Cimera Integration Case Study Page 4 of 13
 All rights reserved. Integrating with Subversion v1.0

BRANCH 3.8
Current File Versions:

A v9
B v13
C v4
D v2

TAG 3.8.1
File Versions:

A v3
B v8
C v1
D v1

TAG 3.8.2
File Versions:

A v5
B v8
C v1
D v2

TAG 3.8.3
File Versions:

A v7
B v11
C v3
D v2

7/11/2015

12/11/2015

1/12/2015

Note: Subversion is a very flexible tool and can be configured and used in many different ways to suit
a particular organisation’s development process. There is no “one size fits all” model.

Subversion runs on both Windows and UNIX platforms.

2.2 Cimera

Cimera is used to track all Products and individual Product Builds (versions) within the organisation.
Cimera is also used to manage many other types of items including Test Defects and Changes that it
is desirable to link to Product Builds to answer questions such as “what changes are included in this
Product Build?” and “what defects does this Product Build resolve?”

Cimera additionally records deployments of Product Builds to Environments and Servers answering
the questions “where is this Product Build installed?” and “what Product Builds are installed on this
server?”

Using Cimera’s audit facilities it is also possible to determine answers to questions such as “what
Product Build was present in this Environment on this date?” and “what other product version were
present at that time?”

A relevant subset of the organisation’s specific Cimera configuration is shown below:

© Propel Systems, 2016 Cimera Integration Case Study Page 5 of 13
 All rights reserved. Integrating with Subversion v1.0

Product

Product Build

Has Versions

Test Defect

Technical Change

Server

Environment

Resolved By

Implemented By

Hosted On

Contains

A Product Build has been configured with the following lifecycle:

Planned Built In Test Signed Off

Withdrawn

Failed

A Product Build begins life in the “Planned” state. At this point the Build is registered, even if
development work has not yet started. In this planning state defects and changes can be related to
the Build – providing a recipe for what defects this Build is intended to resolve and what technical
changes it is intended to deliver.

When development has completed and the code has been unit tested it is then built, ready for
deployment and testing, and the Build is promoted to the “Built” status within the lifecycle.

Note: Like Subversion, Cimera is a very flexible tool and can be configured and used in many different
ways to suit a particular organisation’s development process. There is no “one size fits all” model.

Cimera runs on the Windows platform.

© Propel Systems, 2016 Cimera Integration Case Study Page 6 of 13
 All rights reserved. Integrating with Subversion v1.0

3 Integrating Cimera and Subversion

Both Cimera and Subversion are unpredictable in terms of their use cases and configuration. There is
no standard “connector” available as it would either only work in very limited cases or have to be
very highly configurable and even then would not be guaranteed to be relevant in all situations.

It is therefore easier, and more likely to meet the organisation’s need to create a custom integration,
interfacing to both systems.

3.1 Interfacing with Subversion

Subversion has a command line client that can be used to perform all client functions, including
extracting metadata from the server’s repository.

Subversion also supports “Repository Hooks”. These are server side scripts that are called when
something changes in the Subversion repository. They can inspect the changes and either reject the
changes or be used to provide notification to users or external systems.

There is no approved method to access Subversion’s underlying database.

3.2 Interfacing with Cimera

Cimera has many ways in which it can be integrated with external tools, systems and data sources:

Client-side plug-in
(run by user on demand)

[developed by PS]

Powershell Scripts
(run on client or server. Run by

user or Windows scheduler)
[developed by PS or Customer]

Server exits
(inspect / act on every user

action)
[developed by PS]

Web Interface
(called using HTTP / JSON)

[developed by PS or Customer]

Reconciler
(load / update data from external

data source. Uses Cimera scheduler)
[configured by Customer]

Data loader
(upload data from Excel / CSV.

Run by user on demand)
[pre-built]

CIMERA

DB

Customer’s systems

HTTP(S) / JSON

Customer’s systems DB

Customer’s systems

DB

Customer’s systems

DB

CIMERA
.NET API

It is a matter of selecting the most appropriate interface in conjunction with the other system’s
available interface.

Criteria taken into consideration should be:

 Simplicity – Simplicity of the integration and its deployment and configuration will make the
integration easier for people to understand and maintain in the future.

© Propel Systems, 2016 Cimera Integration Case Study Page 7 of 13
 All rights reserved. Integrating with Subversion v1.0

 Robustness – Any integration should be reliable and any errors should be recorded and
notified to the responsible person or team. Fault tolerance is important and minimal manual
activity should be required after failure.

 Skills – Does the organisation’s skills better suit using one approach or another? In the future
will the organisation have access to the skills necessary for maintenance?

 Approved API / Access – It is desirable to integrate using published and supported methods
and APIs (Application Programming Interfaces). Approved APIs will normally continue to be
supported in new versions of the product. Sometimes this is not possible with legacy
products or those that do not provide APIs.

 Cross-Platform – If the products to be integrated sit on different platforms then it may
eliminate some of the integration options as they cannot be used across different platforms.

 User-dependency – Does the solution have a dependency on user action? Sometimes this is
acceptable, or even a requirement (the integration must be invoked by a user – normally
when some intelligence or approval is required), and sometimes it is desirable for an
integration to operate quietly in the background.

 Consistency – if it is required to integrate across a number of systems or data sources then it
may be desirable to use one consistent method rather than a number of different methods.

3.3 Integration Options

The following options were considered. This is not an exhaustive list but some options were
discounted due to obvious complexity.

3.3.1 Option 1: Using Subversion command line interface

Cimera ServerSubversion Server

CIMERASUBVERSION

SUBVERSION
CLIENT

Subversion Server

SUBVERSION

Subversion Server

SUBVERSION

Powershell
Script

Windows
Scheduler

3.3.1.1 Description

A Powershell script is created that runs on the Cimera server. It calls the Subversion CLI (command
line interface) which is also installed on the Cimera server to retrieve information from the different
Subversion repositories and then reconciles this with information in Cimera using the standard

© Propel Systems, 2016 Cimera Integration Case Study Page 8 of 13
 All rights reserved. Integrating with Subversion v1.0

Cimera API. The Windows Scheduler is used on the Cimera server to manage running the Powershell
script according to an appropriate schedule.

Advantages Disadvantages

 Requires single deployment on the
Cimera server.

 Cimera API is easiest to code against
robustly.

 Subversion has a well documented and
simple Command Line Interface
requiring no specialist Subversion skills.

 Powershell extracts all builds from
Subversion and compares with Cimera
so if there are any failures, the next
time it runs it will catch up.

 Builds are not immediately reconciled
with Cimera – if the script runs every 10
minutes then there could be up to 10
minutes before the information is
reflected in Cimera.

3.3.2 Option 2: Using Subversion hooks and Cimera Web Interface

Cimera ServerSubversion Server

CIMERASUBVERSION

Subversion Server

SUBVERSION

Subversion Server

SUBVERSION

Custom hook

Custom hook

Custom hook

CIMERA
Web Interface

3.3.2.1 Description

A Subversion “Custom hook” is programmed that monitors Subversion activity and on creation or
deletion of a “tag” calls Cimera via its Web Interface (as the Cimera API can only be called from
machines running Windows and from programming languages that interface with .NET).

Advantages Disadvantages

 Subversion activities are immediately
reflected in Cimera.

 Requires more detailed Subversion
knowledge and programming.

 Hooks may have to be written
differently on Windows and UNIX.

 Multiple deployments.

© Propel Systems, 2016 Cimera Integration Case Study Page 9 of 13
 All rights reserved. Integrating with Subversion v1.0

 Programming against the Cimera Web
Interface is harder than the Cimera API.

 Only changes are sent to Cimera so if
the process fails then changes may be
missed. This may require extra coding
to ensure changes are not lost.

3.3.3 Option 3: Using Cimera hooks and intermediate files

Subversion Server

Subversion Server

Subversion Server

File Server

Cimera ServerSubversion Server

CIMERASUBVERSION

Subversion Server

SUBVERSION

Subversion Server

SUBVERSION

Powershell
Script

SUBVERSION

SUBVERSION

SUBVERSION

Custom hook

Custom hook

Custom hook

File File File

Windows
Scheduler

3.3.3.1 Description

A subversion “Custom hook” is programmed to write Subversion activities to a file on a file server.
The Windows Scheduler periodically runs a script to reconcile the contents of the files with Cimera.

Advantages Disadvantages

 Uses simpler Cimera API.

 Separation into Subversion and Cimera
interface code – neither requiring
knowledge of the other, only the
shared file format.

 Builds are not immediately reconciled
with Cimera – if the script runs every 10
minutes then there could be up to 10
minutes before the information is
reflected in Cimera.

 Hooks may have to be written
differently on Windows and UNIX.

 Multiple deployments.

 Potential problems with file locking (if
script is processing a file that is in use
by Subversion) and file management.

 Only changes are sent to Cimera so if
the process fails then changes may be

© Propel Systems, 2016 Cimera Integration Case Study Page 10 of 13
 All rights reserved. Integrating with Subversion v1.0

missed. This may require extra coding
to ensure changes are not lost.

3.4 Selected Option

Option 1 was selected:

 The developer had good knowledge of Cimera but only basic knowledge of Subversion.

 There is a small library of Powershell Cimera helper functions and skeleton scripts.

 The slight delay in information being loaded into Cimera is acceptable and the schedule
could be set to run every 5 minutes to reduce the puts little load on Subversion and Cimera.

 Single simple deployment on one server

 File based interfaces are simple and have been the de facto standard for many years but
require extra effort to make resilient.

3.5 Solution Design

The solution requires changes to Cimera to add new attributes to store the Subversion information.

3.5.1 Cimera Configuration

Add a text attribute “SVN Repository” to the Product (stem). This is used to indicate if the Product is
managed in Subversion and if so where the repository is (repository name is a URL, e.g.
https://mysvnserver.com/svn/product)

Add an integer attribute “SVN Revision” to the Product Build (version). This is used to store the
Subversion revision number that relates to the build. The script will populate this and will ensure it is
consistent. If for any reason it is changed in Subversion the change will be reflected in Cimera.

Add a Date Time attribute “SVN Date” to the Product Build (version). This is used to store the
Date/Time when the Subversion build was created. The script will populate this and will ensure it is
consistent. If for any reason it is changed in Subversion the change will be reflected in Cimera.

Product

SVN Repository

Product Build

Status
SVN Revision

SVN Date

When an error is detected in the script it will also create an item of type “Alert” in Cimera and assign
it to a resolving group. Therefore need to add a new Item Type of Alert and supporting fields. This is
only required because Alerts have never been required or defined in Cimera before. This is an
extension that may well find other uses where automated processing or other interfaces need to
notify an appropriate person or team that a failure has occurred. Using alerts also means that if the

© Propel Systems, 2016 Cimera Integration Case Study Page 11 of 13
 All rights reserved. Integrating with Subversion v1.0

script runs once and finds a problem, the next time it runs it can check to see if there is an open alert
for the problem and therefore does not need to raise it again.

Alert

Name (auto generated
ALRTnnnnnnn)
Description *

Status
(open/assigned/closed)

Assignee *
Severity *

Code *
Detail

* indicates mandatory
data

Any Item or Version Has Alert

3.5.2 Psuedo-code

The following psuedo-code describes the technical process:

Get a list of all Products (Product stem) from Cimera
For each Product
 If Product has SVN Repository defined then
 Call SVN to get a list of “tags”
 If Repository does not exist create an alert in Cimera
 Get a list of all Product Builds (Product versions) from Cimera
 For each SVN tag
 If a Product Build does not exist in Cimera then create an alert
 If the Cimera status is “Planned” then promote to “Built”
 If the SVN information is missing or incorrect in Cimera then set it
 Next
 End If
Next

3.6 Implementation

3.6.1 Full script

The full Powershell script (excluding Cimera function library):

$CimeraServer = "thruster.propelsystems.com"
$CimeraUser = 'xxx'
$CimeraPass = 'xxx'
$CimeraDB = 'UDMS'
$svnExe = "C:\Program Files\TortoiseSVN\bin\svn.exe"
$tagsFile = 'd:\cimera\scripts\tags.xml'
$svnLogFile = 'd:\cimera\scripts\svnLog.txt'
$svnUser = 'xxx'
$svnPass = 'xxx'

function DoWork()
{
 $cql = "find [product]"
 $products = Cimera-Query($cql)
 foreach ($id in $products.keys)
 {
 $product = $product.getciobject($id)
 if ($product.fields.exists("FLD:A1015") -and $product.fields.item("FLD:A1015").value -ne "")
 {
 $svnRepo = $product.fields.item("FLD:A1015").value
 If (Test-Path $tagsFile){Remove-Item $tagsFile}
 If (Test-Path $svnLogFile){Remove-Item $svnLogFile}
 $gotSvnDetails = $True

© Propel Systems, 2016 Cimera Integration Case Study Page 12 of 13
 All rights reserved. Integrating with Subversion v1.0

 try {
 & $svnExe ls --xml "$svnRepo" --username "$svnUser" --password "$svnPass" > "$tagsFile" 2> "$svnLogfile"
 } catch {
 $gotSvnDetails = $False
 RaiseInvalidRepoAlert $id $svnRepo $_.exception.Message
 }
 if ($gotSvnDetails -eq $True)
 {
 $tags = [xml] (Get-Content $tagsFile)
 $cql = "find [product] version where civciid='" + $product.fields.item('FLD:A$CIOBJID').value + "'"
 $productVersions = Cimera-Query($cql)
 foreach ($tag in $tags.lists.list.entry)
 {
 "CHECKING " + $tag.name
 $matchingVersion = ""
 foreach ($vid in $productVersions.keys)
 {
 $productVersion = $productVersions.getciversion($vid)
 if ($tag.name -eq $productVersion.civersionname)
 {
 $matchingVersion = $productVersion
 break
 }
 }
 if ($matchingversion -eq "")
 {
 $tag.name + " not found"
 RaiseMissingBuildAlert $id $tag.name
 } else {
 $currentStatus = $matchingVersion.fields.item('FLD:O$CISTATUS').value
 $revDate = Cimera-ConvertToCimeraDateTime $tag.commit.date
 $revNo = $tag.commit.getattribute("revision")
 if ($currentStatus -eq 'STA:@16' `
 -or -not $matchingVersion.fields.exists('FLD:I1016') `
 -or -not $matchingVersion.fields.exists('FLD:A1017') `
 -or $matchingVersion.fields.item('FLD:I1016').value -ne $revNo `
 -or $matchingVersion.fields.item('FLD:A1017').value -ne $revDate)
 {
 $ExistingBuild = Cimera-GetItemForUpdate $vid
 if ($currentStatus -eq 'STA:@16')
 {
 $ExistingBuild.fields.item('FLD:O$CISTATUS').value = 'STA:@21'
 }
 $ExistingBuild.fields.item('FLD:I1016').value = $revNo
 $ExistingBuild.fields.item('FLD:A1017').value = $revDate
 $ExistingBuild = Cimera-UpdateItem $ExistingBuild
 }
 }
 }
 }
 }
 }
}

function RaiseMissingBuildAlert($rProductId,$rMissingBuildName)
{
 #Is there already an alert?
 $cql = "find alert where Code = 1 and cidescription = '$rMissingBuildName' and cistatus <> 'closed' and [Alert For](FIND
[Product] WHERE ciobjid= '$rProductId')"
 $existingAlerts = Cimera-Query($cql)
 if ($existingAlerts.count -eq 0)
 {
 # No, so create one
 $newAlert = Cimera-GetNewItem 'TYP:1011' 'BKT:@HELP'
 $newAlert.fields.item('FLD:A1012').value = "Error"
 $newAlert.fields.item('FLD:I1013').value = 1
 $newAlert.fields.item('FLD:O$CIOWNER').value = 'GRP:$ADMIN/'
 $newAlert.fields.item('FLD:O$CIASSIGNEE').value = 'GRP:$ADMIN/'
 $newAlert.fields.item('FLD:A$CIDESCRIPTION').value = $rMissingBuildName
 $newLink = Cimera-GetNewLink 'VLK:1013:R' $rProductId
 $newAlert.linksets.addlink($newLink, $False)
 $newAlert = Cimera-CreateItem($newAlert)
 }
}

function RaiseInvalidRepoAlert($rProductId,$rInvalidRepoName,$rErrorDetail)
{
 #Is there already an alert?
 $cql = "find alert where Code = 2 and cidescription = '$rInvalidRepoName' and cistatus <> 'closed' and [Alert For](FIND
[Product] WHERE ciobjid= '$rProductId')"
 $existingAlerts = Cimera-Query($cql)
 if ($existingAlerts.count -eq 0)
 {
 # No, so create one
 $newAlert = Cimera-GetNewItem 'TYP:1011' 'BKT:@HELP'
 $newAlert.fields.item('FLD:A1012').value = "Error"
 $newAlert.fields.item('FLD:I1013').value = 2
 $newAlert.fields.item('FLD:O$CIOWNER').value = 'GRP:$ADMIN/'
 $newAlert.fields.item('FLD:O$CIASSIGNEE').value = 'GRP:$ADMIN/'
 $newAlert.fields.item('FLD:A$CIDESCRIPTION').value = $rInvalidRepoName
 $newAlert.fields.item('FLD:T1014').value = $rErrorDetail
 $newLink = Cimera-GetNewLink 'VLK:1013:R' $rProductId
 $newAlert.linksets.addlink($newLink, $False)
 $newAlert = Cimera-CreateItem($newAlert)
 }
}

3.6.2 Skills and Effort required

Creating and implementing the solution required knowledge of the Cimera API, Cimera configuration
and Powershell scripting. Little Subversion knowledge was required.

In terms of effort, the solution took the following time to develop and implement in production:

© Propel Systems, 2016 Cimera Integration Case Study Page 13 of 13
 All rights reserved. Integrating with Subversion v1.0

Solution Design 0.5 days

Develop and Test 0.5 days

Implement 0.5 days

TOTAL 1.5 days

